Section 5: Health Hazards of Chemicals (2023)

Baylor>>Laboratory Safety>Section 5: Health Hazards of Chemicals

Introduction

Basic Toxicology

How Chemicals Enter Your Body

Effects of Chemical Exposure

Determining Chemical Exposure

    Introduction

    The decisions you make concerning the use of chemicals in the laboratory should be based on an objective analysis of the hazards, rather than merely the perception of the risks involved. Once this has been accomplished, a reasonable means of controlling the hazards through experimental protocol, work practices, ventilation, use of protective clothing, etc., can be determined.

    In order to assess the hazards of a particular chemical, both the physical and health hazards of the chemical must be considered.

    Before using any chemical, the material safety data sheet (MSDS) or other appropriate resource should be reviewed to determine what conditions of use might pose a hazard. Accidents with hazardous chemicals can happen quickly and may be quite severe. The key to prevention of these accidents is awareness. Once the hazards are known, the risk of an accident may be reduced significantly by using safe work practices.

    Basic Toxicology

    The health effects of hazardous chemicals are often less clear than the physical hazards. Data on the health effects of chemical exposure, especially from chronic exposure, are often incomplete. When discussing the health effects of chemicals, two terms are often used interchangeably - toxicity and hazard. However, the actual meanings of these words are quite different. Toxicity is an inherent property of a material, similar to its physical constants. It is the ability of a chemical substance to cause an undesirable effect in a biological system. Hazard is the likelihood that a material will exert its toxic effects under the conditions of use. Thus, with proper handling, highly toxic chemicals can be used safely. Conversely, less toxic chemicals can be extremely hazardous if handled improperly.

    RISK = TOXICITY x EXPOSURE

    The actual health risk of a chemical is a function of the toxicity and the actual exposure. No matter how toxic the material may be, there is little risk involved unless it enters the body. An assessment of the toxicity of the chemicals and the possible routes of entry will help determine what protective measures should be taken.

    Routes of Entry

    Skin and Eye Contact

    Section 5: Health Hazards of Chemicals (1)

    The simplest way for chemicals to enter the body is through direct contact with the skin or eyes. Skin contact with a chemical may result in a local reaction, such as a burn or rash, or absorption into the bloodstream. Absorption into the bloodstream may then allow the chemical to cause toxic effects on other parts of the body. The MSDS usually includes information regarding whether or not skin absorption is a significant route of exposure.

    (Video) Chemical Hazards in Food (Part-5)

    The absorption of a chemical through intact skin is influenced by the health of the skin and the properties of the chemical. Skin that is dry or cracked or has lacerations offers less resistance. Fat-soluble substances, such as many organic solvents, can easily penetrate skin and, in some instances, can alter the skin's ability to resist absorption of other substances.

    Wear gloves and other protective clothing to minimize skin exposure. See Personal Protective Equipment for more information. Symptoms of skin exposure include dry, whitened skin, redness and swelling, rashes or blisters, and itching. In the event of chemical contact on skin, rinse the affected area with water for at least 15 minutes, removing clothing while rinsing, if necessary. Seek medical attention if symptoms persist.

    Avoid use of solvents for washing skin. They remove the natural protective oils from the skin and can cause irritation and inflammation. In some cases, washing with a solvent may facilitate absorption of a toxic chemical.

    Chemical contact with eyes can be particularly dangerous, resulting in painful injury or loss of sight. Wearing safety goggles or a face shield can reduce the risk of eye contact. Eyes that have been in contact with chemicals should be rinsed immediately with water continuously for at least 15 minutes. Contact lenses should be removed while rinsing - do not delay rinsing to remove the lenses. Medical attention is necessary if symptoms persist.

    Inhalation

    Section 5: Health Hazards of Chemicals (2)

    The respiratory tract is the most common route of entry for gases, vapors, particles, and aerosols (smoke, mists and and fumes). These materials may be transported into the lungs and exert localized effects, or be absorbed into the bloodstream. Factors that influence the absorption of these materials may include the vapor pressure of the material, solubility, particle size, its concentration in the inhaled air, and the chemical properties of the material. The vapor pressure is an indicator of how quickly a substance evaporates into the air and how high the concentration in air can become - higher concentrations in air cause greater exposure in the lungs and greater absorption in the bloodstream.

    Most chemicals have an odor that is perceptible at a certain concentration, referred to as the odor threshold; however, there is no relationship between odor and toxicity. There is considerable individual variability in the perception of odor. Olfactory fatigue may occur when exposed to high concentrations or after prolonged exposure to some substances. This may cause the odor to seem to diminish or disappear, while the danger of overexposure remains.

    Symptoms of over-exposure may include headaches, increased mucus production, and eye, nose and throat irritation. Narcotic effects, including confusion, dizziness, drowsiness, or collapse, may result from exposure to some substances, particularly many solvents. In the event of exposure, close containers or otherwise increase ventilation, and move to fresh air. If symptoms persist, seek medical attention.

    Volatile hazardous materials should be used in a well-ventilated area, preferably a fume hood, to reduce the potential of exposure. Occasionally, ventilation may not be adequate and a fume hood may not be practical, necessitating the use of a respirator. The Occupational Safety and Health Administration Respiratory Protection Standard regulates the use of respirators; thus, use of a respirator is subject to prior review by EHS according to University policy. See Personal Protective Equipment for more information.

    Ingestion

    (Video) Chemical Hazards: A Type of Hazard in the Workplace

    Section 5: Health Hazards of Chemicals (3)

    The gastrointestinal tract is another possible route of entry for toxic substances. Although direct ingestion of a laboratory chemical is unlikely, exposure may occur as a result of ingesting contaminated food or beverages, touching the mouth with contaminated fingers, or swallowing inhaled particles which have been cleared from the respiratory system. The possibility of exposure by this route may be reduced by not eating, drinking, smoking, or storing food in the laboratory, and by washing hands thoroughly after working with chemicals, even when gloves were worn.

    Direct ingestion may occur as a result of the outdated and dangerous practice of mouth pipetting. In the event of accidental ingestion, immediately contact the Poison Control Center, at 800-962-1253 for instructions. Do not induce vomiting unless directed to do so by a health care provider.

    Injection

    Section 5: Health Hazards of Chemicals (4)

    The final possible route of exposure to chemicals is by injection. Injection effectively bypasses the protection provided by intact skin and provides direct access to the bloodstream, thus, to internal organ systems. Injection may occur through mishaps with syringe needles, when handling animals, or through accidents with pipettes, broken glassware or other sharp objects that have been contaminated with toxic substances.

    If injection has occurred, wash the area with soap and water and seek medical attention, if necessary. Cautious use of any sharp object is always important. Substituting cannulas for syringes and wearing gloves may also reduce the possibility of injection.

    Toxic Effects of Chemical Exposure

    How a chemical exposure affects a person depends on many factors. The dose is the amount of a chemical that actually enters the body. The actual dose that a person receives depends on the concentration of the chemical and the frequency and duration of the exposure. The sum of all routes of exposure must be considered when determining the dose.

    In addition to the dose, the outcome of exposure is determined by (1) the way the chemical enters the body, (2) the physical properties of the chemical, and (3) the susceptibility of the individual receiving the dose.

    Toxic Effects of Chemicals

    The toxic effects of a chemical may be local or systemic. Local injuries involve the area of the body in contact with the chemical and are typically caused by reactive or corrosive chemicals, such as strong acids, alkalis or oxidizing agents. Systemic injuries involve tissues or organs unrelated to or removed from the contact site when toxins have been transported through the bloodstream. For example, methanol that has been ingested may cause blindness, while a significant skin exposure to nitrobenzene may effect the central nervous system.

    (Video) 5 Chemical Hazards | Handling of Hazardous Chemicals

    Certain chemicals may affect a target organ. For example, lead primarily affects the central nervous system, kidney and red blood cells; isocyanates may induce an allergic reaction (immune system); and chloroform may cause tumors in the liver and kidneys.

    It is important to distinguish between acute and chronic exposure and toxicity. Acute toxicity results from a single, short exposure. Effects usually appear quickly and are often reversible. Chronic toxicity results from repeated exposure over a long period of time. Effects are usually delayed and gradual, and may be irreversible. For example, the acute effect of alcohol exposure (ingestion) is intoxication, while the chronic effect is cirrhosis of the liver. Acute and chronic effects are distinguished in the MSDS, usually with more information about acute exposures.

    Relatively few chemicals have been evaluated for chronic effects, given the complexity of that type of study. Chronic exposure may have very different effects than acute exposure. Usually, studies of chronic exposure evaluate its cancer causing potential or other long-term health problems.

    Evaluating Toxicity Data

    Most estimates of human toxicity are based on animal studies, which may or may not relate to human toxicity. In most animal studies, the effect measured is usually death. This measure of toxicity is often expressed as an LD50 (lethal dose 50) - the dose required to kill 50% of the test population. The LD50 is usually measured in milligrams of the material per kilogram of body weight of the test animal. The concentration in air that kills half of the population is the LC50.

    To estimate a lethal dose for a human based on animal tests, the LD50 must be multiplied by the weight of an average person. Using this method, it is evident that just a few drops of a highly toxic substance, such as dioxin, may be lethal, while much larger quantities of a slightly toxic substance, such as acetone, would be necessary for the same effect.

    Susceptibility of Individuals

    Factors that influence the susceptibility of an individual to the effects of toxic substances include nutritional habits, physical condition, obesity, medical conditions, drinking and smoking, and pregnancy. Due to individual variation and uncertainties in estimating human health hazards, it is difficult to determine a dose of a chemical that is totally risk-free.

    Regular exposure to some substances can lead to the development of an allergic rash, breathing difficulty, or other reactions. This phenomenon is referred to as sensitization. Over time, these effects may occur with exposure to smaller and smaller amounts of the chemical, but will disappear soon after the exposure stops. For reasons not fully understood, not everyone exposed to a sensitizer will experience this reaction. Examples of sensitizers include epoxy resins, nickel salts, isocyanates and formaldehyde.

    Particularly Hazardous Substances

    The OSHA Laboratory Standard defines a particularly hazardous substance as "select carcinogens", reproductive toxins, and substances that have a high degree of acute toxicity. Further information about working with Particularly Hazardous Substances is outlined in Particularly Hazardous Substances.

    (Video) Chemical Hazard #safetyfirst #lifegallerychannel #chemicalsafety

    Where To Find Toxicity Information

    Toxicity information may be found in Material Safety Data Sheets, under the "Health Hazard Data" section, on product labels, in the Registry of Toxic Effects of Chemical Substances, or in many other sources listed in the MSDS page.

    Chemical Exposure Determination

    OSHA establishes exposure limits for several hundred substances. Laboratory workers must not be exposed to substances in excess of the permissible exposure limits (PEL) specified in OSHA Subpart Z, Toxic and Hazardous Substances. PELs refer to airborne concentrations of substances averaged over an eight-hour day. Some substances also have "action levels" below the PEL requiring certain actions such as medical surveillance or routine air sampling.

    The MSDS for a particular substance indicates whether any of the chemicals are regulated through OSHA and, if so, the permissible exposure limit(s) for the regulated chemical(s). This information is also available in the OSHA Table Z list of regulated chemicals.

    Exposure Monitoring

    Exposure monitoring must be conducted if there is reason to believe that exposure levels for a particular substance may routinely exceed either the action level or the PEL. EHS and the principal investigator or supervisor may use professional judgment, based on the information available about the hazards of the substance and the available control measures, to determine whether exposure monitoring must be conducted.

    When necessary, exposure monitoring is conducted by EHS according to established industrial hygiene practices. Results of the monitoring are made available to the individual monitored, his or her supervisor, and the departmental Chemical Hygiene Officer within 15 working days of the receipt of analytical results.

    Based on the monitoring results, periodic air sampling may be scheduled at the discretion of EHS, in accordance with applicable federal, state and local regulations.

    EHS maintains records of all exposure monitoring results. Departmental Chemical Hygiene Officers should keep records of monitoring conducted for their department operations.

    Top of Page

    Previous Section

    (Video) You DON'T Have a Slow Metabolism, It's THIS Instead...

    Next Section

    Table of Contents

    FAQs

    Section 5: Health Hazards of Chemicals? ›

    Routes of Entry (top)
    • Skin and Eye Contact. The simplest way for chemicals to enter the body is through direct contact with the skin or eyes. ...
    • Inhalation. The respiratory tract is the most common route of entry for gases, vapors, particles, and aerosols (smoke, mists and and fumes). ...
    • Ingestion. ...
    • Injection.

    What is chemical health hazard? ›

    What Is A Chemical Health Hazard? When personnel are exposed to a hazardous substance, it is deemed a chemical health hazard. Hazardous chemicals can cause health issues by being absorbed through the skin, inhaled, swallowed or ingested.

    What are the 6 types of chemical hazards? ›

    There are many types of hazardous chemicals, including neurotoxins, immune agents, dermatologic agents, carcinogens, reproductive toxins, systemic toxins, asthmagens, pneumoconiotic agents, and sensitizers. In the workplace, exposure to chemical hazards is a type of occupational hazard.

    What is chemical hazard and its examples? ›

    Hazardous chemicals are substances that can cause adverse health effects such as poisoning, breathing problems, skin rashes, allergic reactions, allergic sensitisation, cancer, and other health problems from exposure. Many hazardous chemicals are also classified as dangerous goods.

    What are the three main chemical hazards? ›

    Chemical hazards
    • skin irritants.
    • carcinogens.
    • respiratory sensitisers.
    Dec 1, 2021

    What are the 4 health hazards? ›

    There are many types of hazards - chemical, ergonomic, physical, and psychosocial, to name a few - which can cause harm or adverse effects in the workplace.

    What is an example of a health hazard? ›

    Health hazards include chemical hazards (solvents, adhesives, paints, toxic dusts, etc.), physical hazards (noise, radiation, heat, etc.), biological hazards (infectious diseases), and ergonomic risk factors (heavy lifting, repetitive motions, vibration).

    What is chemical hazard PDF? ›

    A chemical hazard is a type of occupational hazard. caused by exposure to chemicals in the workplace. Exposure to chemicals in the workplace can cause. acute or long-term detrimental health effects.

    What is a Category 4 chemical? ›

    Category 4 chronic toxicity is based on persistence alone, in the absence of toxicity data. OPP does not now label chronic aquatic toxicity. OPP requires no signal word or symbol for aquatic toxicity.

    What are the 2 types of chemical hazards? ›

    Compressed Gases

    Liquefied: gases which can become liquids at normal temperatures when they are inside cylinders under pressure. Dissolved gases: A nonliquefied compressed gas that is dissolved in a solvent.

    How many types of health hazards are there? ›

    In our discipline of occupational health and safety, the six primary hazard categories are: Physical hazards. Chemical hazards. Biological hazards.

    What are the 7 hazardous substances? ›

    There are 9 hazardous substances symbols you need to know: flammable, oxidising, explosives, gas under pressure, toxic, serious health hazard, health hazard, corrosive and environmental hazard.

    What are chemical hazards in the workplace? ›

    A chemical hazard is simply the risks involved with using a chemical. So in the workplace chemical hazards can be; Health hazards - where workers and other personnel are exposed to hazardous chemicals through inhalation, absorption through the skin, or ingestion and swallowing.

    What diseases are caused by chemicals? ›

    Let's look at an overview of some serious injuries commonly associated with toxic chemical exposure.
    • Aplastic anemia. ...
    • Asbestosis. ...
    • Asthma. ...
    • Bronchiolitis obliterans. ...
    • Cancer. ...
    • Hodgkin's Disease. ...
    • Leukemia. ...
    • Mesothelioma.

    How do you identify chemical hazards? ›

    To identify if a substance is hazardous, check the product's container label and/or the SDS which is available from the supplier. If a product is not classified as a hazardous chemical under the Work Health and Safety Act 2011, a SDS is not required and therefore may not be available.

    How are chemical hazards classified? ›

    Criteria for classifying chemicals have been developed for the following health hazard classes: Acute toxicity. Skin corrosion/irritation. Serious eye damage/eye irritation.

    What are the causes of chemical hazards? ›

    Chemicals can enter the environment from many different sources such as landfills, incinerators, tanks, drums, or factories. Human exposure to hazardous chemicals can occur at the source or the chemical could move to a place where people can come into contact with it. Chemicals can move through air, soil, and water.

    What are 5 types of physical hazards? ›

    Physical hazards include exposure to slips, trips, falls, electricity, noise, vibration, radiation, heat, cold and fire.

    What are the 5 types of occupational hazards? ›

    The Occupational Safety and Health Administration (OSHA) describes five categories of occupational hazards: physical safety hazards, chemical hazards, biological hazards, physical hazards, and ergonomic risk factors. Physical safety hazards include anything that could lead to injury in a workplace accident.

    What are the 4 types of hazards give an example of each? ›

    There are four types of hazards that you need to consider:
    • Microbiological hazards. Microbiological hazards include bacteria, yeasts, moulds and viruses.
    • Chemical hazards. ...
    • Physical hazards. ...
    • Allergens.
    Oct 19, 2016

    What are the major types of health hazards? ›

    The six main categories of hazards are:
    • Biological. Biological hazards include viruses, bacteria, insects, animals, etc., that can cause adverse health impacts. ...
    • Chemical. Chemical hazards are hazardous substances that can cause harm. ...
    • Physical. ...
    • Safety. ...
    • Ergonomic. ...
    • Psychosocial.
    Jan 7, 2019

    What are chemical hazards at home? ›

    Hazardous household chemicals may include:

    Pesticides. Automotive products (like antifreeze or motor oil) Miscellaneous items (like batteries, mercury thermometers and florescent light bulbs) Flammable products (like kerosene, home heating oil, propane tanks and lighter fluid)

    What is a Class 3 hazard classification? ›

    Class 3 dangerous goods are flammable liquids with flash points no more than 60 celcius degrees. It covers liquid substances, molten solid substances with a flash point above 60 celcius degrees and liquid desensitized explosives.

    What is Category 3 hazard? ›

    This class includes compressed gases, liquefied gases, dissolved gases and refrigerated liquefied gases. Compressed gases, liquefied gases and dissolved gases are hazardous because of the high pressure inside the cylinder or container.

    Is Category 1 or 4 Worse? ›

    For gases and some reproductive toxins, the categories are listed by names rather than numbers or letters. This ranking system where 1 = the greatest hazard and 4 = the least is the exact opposite of the NFPA and HMIS® systems, and is a serious potential point of confusion for untrained workers.

    What are the 10 hazard symbols? ›

    Hazard pictograms (symbols)
    • Explosive (Symbol: exploding bomb)
    • Flammable (Symbol: flame)
    • Oxidising (Symbol: flame over circle)
    • Corrosive (Symbol: corrosion)
    • Acute toxicity (Symbol: skull and crossbones)
    • Hazardous to the environment (Symbol: environment)
    Feb 11, 2022

    What are the 4 types of hazardous materials? ›

    Class 1: Explosives. Class 2: Gases. Class 3: Flammable Liquids. Class 4: Flammable Solids or Substances.

    What are Class 9 chemicals? ›

    Class 9: substances toxic to the environment.

    How do you handle chemical hazards in the workplace? ›

    1. Elimination: Discontinue the use of the hazardous chemical.
    2. Substitution: Replace the hazardous chemical with a less hazardous substance.
    3. Engineering Controls: Isolate people from the hazardous substance.
    4. Administrative controls: Change the way people work.
    5. PPE: Protect people with personal protective equipment.
    Jun 7, 2018

    How do you handle chemical hazards? ›

    Follow these safety precautions:
    1. Carefully read the ingredient list of any product or chemical you use. ...
    2. Purchase the proper personal protective equipment like gloves or goggles. ...
    3. Be aware of the hazardous materials you come in contact with. ...
    4. Follow safe procedures when you handle hazardous material.

    Which chemical poses the greatest health risk? ›

    Chlorine and ammonia are the toxic chemicals most commonly used in quantities large enough to pose a major hazard. Both have a history of major accidents. There are also other chemicals which, although used in smaller quantities should, be handled with particular care because of their higher toxicity.

    Videos

    1. I Went 800ft Underground To Find a Solution To One Of My Biggest Problems
    (HeavyDSparks)
    2. Safety Toolbox Talks: Chemical Safety and Hazard Communication
    (NAHBTV)
    3. NEBOSH IGC 2 Element 7 PART 2. Chemical and Biological health hazards
    (Dilbar Vlogs)
    4. Chemical Hazards / Lab Safety Video Part 4
    (BioNetwork)
    5. #NEBOSH IGC 2 Element 7 PART 1 Chemical and Biological health hazards
    (Dilbar Vlogs)
    6. Harmful Effects of Chemicals
    (The Organic Revolution TV)
    Top Articles
    Latest Posts
    Article information

    Author: Carlyn Walter

    Last Updated: 03/30/2023

    Views: 5936

    Rating: 5 / 5 (50 voted)

    Reviews: 89% of readers found this page helpful

    Author information

    Name: Carlyn Walter

    Birthday: 1996-01-03

    Address: Suite 452 40815 Denyse Extensions, Sengermouth, OR 42374

    Phone: +8501809515404

    Job: Manufacturing Technician

    Hobby: Table tennis, Archery, Vacation, Metal detecting, Yo-yoing, Crocheting, Creative writing

    Introduction: My name is Carlyn Walter, I am a lively, glamorous, healthy, clean, powerful, calm, combative person who loves writing and wants to share my knowledge and understanding with you.